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Background and Motivation

I The equivalent lateral force (ELF) procedure is the most widely
used structural design procedure in practice today

I This procedure considers only the Sa(T1) of the anticipated
ground motions, while ignoring their durations and response
spectral shapes

I Recent studies by the authors and others have, however,
demonstrated that both duration and spectral shape significantly
influence structural collapse capacity

Objectives

I Develop a framework to characterise the influence of duration
and spectral shape on structural collapse risk

I Propose a method to account for the e�ects of duration and
spectral shape in the ELF structural design procedure

Examples of long and short duration ground motions
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Short duration record from 1989 Loma Prieta (MW = 6.9)

I Significant duration Ds was shown to be an e�ective metric of
strong motion duration in a previous study by the authors

Examples of records with di�erent spectral shapes
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I SaRatio is a dimensionless scalar metric of response spectral
shape, similar to ε

SaRatio(T , Tstart, Tend ) =
Sa(T )

Sa,avg (Tstart, Tend )

Structural model
I Eight-story reinforced concrete moment frame building with a

fundamental period 1.76 s, designed for a site in Sea�le

I Model incorporates the strength and sti�ness deterioration of
structural components and destabilizing P − ∆ e�ects: both
characteristics required to capture the e�ect of duration
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Hazard-consistent incremental dynamic analysis (H-IDA)

I Traditional incremental dynamic analysis (IDA) is conducted
using a generic set of 88 records

I The following linear regression model is fit to the estimated
ground motion collapse intensities

ln Sa(T1) at collapse = c0 + cdur ln Ds + css ln SaRatio + ϵ

I R2 is 0.81 using both Ds and SaRatio as predictors, 0.40 using Ds
alone, and 0.45 using SaRatio alone

I Ground motions with long durations and low SaRatio values
cause collapse when scaled to lower intensity levels

I The regression coe�icients cdur and css quantify the sensitivity of
the structure to duration and spectral shape respectively

I The failure surface quantifies the probability a ground motion
with a certain Ds and SaRatio, when scaled to an intensity Sa(T1),
will cause collapse: P [collapse | ln Ds, ln SaRatio, ln Sa(T1)]

I The probability of collapse at an Sa(T1) level is computed by
integrating site-specific conditional distributions of Ds and
SaRatio: f [ ln Ds, ln SaRatio | ln Sa(T1)], over the failure domain

P [collapse | ln Sa(T1)] =

"
P [collapse | ln Ds, ln SaRatio, ln Sa(T1)]

f [ ln Ds, ln SaRatio | ln Sa(T1)] d (ln Ds) d (ln SaRatio)

I Linear contours represent P [collapse | ln Ds, ln SaRatio, ln Sa(T1)],
elliptical contours represent f [ ln Ds, ln SaRatio | ln Sa(T1)], and
the degree of overlap represents P [collapse | ln Sa(T1)]

I A hazard-consistent collapse fragility curve is computed by
evaluating the reliability integral at di�erent Sa(T1) levels
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H-IDA: Using Sa(T1),
SaRatio, and Ds

MSA: Using response
spectra and Ds

IDA: Using Sa(T1) only

IDA: Using Sa(T1) and
FEMA P695 spectral
shape adjustment

Hazard curve

I The fragility curve computed using H-IDA agrees well with that
computed using hazard-consistent multiple stripe analysis (MSA)

Design strength adjustment factors

I A structure designed using the ELF procedure is assumed to
possess an x % (usually 10 %) probability of collapse at the MCER
level, under ground motions possessing a reference duration Dsref

and spectral shape SaRatioref

I Dsref and SaRatioref are defined here as the median duration and
spectral shape of the ground motions expected in Los Angeles

I If the structure is actually located at site where ground motions
of duration Dstarget and spectral shape SaRatiotarget are expected,
to maintain an x % collapse probability at the MCER level, it must
be designed to a adjusted base shear

V = k′durk
′
ssCSW

k′dur =

(
Dsref

Dstarget

)cdur

k′ss =
(

SaRatioref

SaRatiotarget

)css

I This method can be extended to nonlinear response history
analysis (NLRHA) as well, by adjusting the MCER value instead

I cdur and css values are characterised for di�erent structural
systems by conducting similar analyses on a suite of models

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.1

0.2

0.3

−c
du

r

RC ductile MFs
Steel ductile MFs
Steel BRBFs
Steel SCBFs

0.0 0.5 1.0 1.5 2.0 2.5 3.0

T1 (s)

0.0

0.5

1.0

c s
s

I k′dur and k′ss values of 1 s reinforced concrete moment frames are
computed for a number of di�erent sites in Western USA
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City Dstarget5−75 (s) k′
dur SaRatiotarget k′ss k′

dur
k′ss

Eugene 29.4 1.50 2.16 1.11 1.67
San Francisco 10.2 1.20 2.02 1.19 1.43
Portland 11.2 1.23 2.16 1.11 1.36
Sea�le 9.6 1.18 2.20 1.09 1.29
Berkeley 4.9 1.03 2.38 1.01 1.04
Los Angeles 4.3 1.00 2.40 1.00 1.00

I Structures at sites located near the Cascadia subduction zone and
along large crustal faults should be designed to higher base
shears to maintain a geographically uniform risk of collapse

Conclusions
I Developed a hazard-consistent incremental dynamic analysis

(H-IDA) procedure that can be used to compute a
hazard-consistent collapse fragility curve by post-processing the
results of IDA conducted using a generic record set

I Developed a framework to account for the e�ects of duration and
spectral shape in the structural design, and thereby ensure a
uniform risk of structural collapse over di�erent geographical
regions and structural systems


