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Abstract 

This paper describes the application of genetic algorithms to select a generic set of ground motions that can be used to 

conduct hazard-consistent incremental dynamic analysis (HC-IDA) on a wide range of structures located at any site. HC-

IDA is a recently developed procedure that overcomes the primary drawback of traditional incremental dynamic analysis 

(IDA) by enabling the computation of a hazard-consistent collapse fragility curve. Hence, it offers an alternative to the 

commonly employed hazard-consistent multiple stripe analysis (MSA) procedure, but without the need for site-specific 

ground motion selection. The response spectral shapes and durations of the ground motions used to conduct HC-IDA 

should ideally be uniformly distributed over the range of response spectral shapes and durations likely to be expected at 

a wide range of representative sites. This uniform distribution of response spectral shapes and durations enables the 

structural failure surface to be estimated with the least amount of uncertainty. In this study, response spectral shape is 

quantified using the scalar metric SaRatio, while duration is quantified using 5-75% significant duration (Ds5-75). The 

ranges of SaRatio and Ds5-75 values anticipated at Wellington, New Zealand are computed using the generalized 

conditional intensity measure (GCIM) framework. A genetic algorithm is employed to select a suitable record set from a 

database of 2467 ground motions recorded from both shallow crustal and subduction earthquakes. Genetic algorithms 

employ operations such as mutation, crossover, and selection, inspired by the process of natural selection in evolution, to 

optimize highly nonlinear functions. The Latin hypercube sampling technique is used in this study to select the sets of 

ground motions constituting the first generation of chromosomes that have approximately uniform marginal distributions 

of SaRatio and Ds5-75. The fitness of the ground motion sets, quantified using the Kolmogorov-Smirnov test, is then 

optimized over successive generations by crossover and mutation operations. The selected ground motions are 

demonstrated to be able to predict the failure surface of a steel moment frame building more precisely compared to the 

FEMA far-field set. Hence, they can be used to compute the hazard consistent fragility curve of a wide range of structures 

located at a wide range of sites using HC-IDA. 

Keywords: ground motion selection; genetic algorithms; incremental dynamic analysis; hazard-consistent; collapse 

fragility 
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1. Introduction 

This paper describes the application of genetic algorithms to select a generic set of ground motions for 

conducting hazard-consistent incremental dynamic analysis (HC-IDA) [1]. HC-IDA is a recently developed 

procedure that imparts incremental dynamic analysis (IDA) the ability to compute hazard-consistent collapse 

risk estimates, provided the ground motions used in the procedure satisfy certain broad criteria. Such a generic 

ground motion set, once selected, can be employed to analyze different types of structures located at a wide 

range of sites. This makes HC-IDA easier to conduct compared to multiple stripe analysis (MSA) [2], which 

requires the selection of hazard-consistent site and structure specific record sets at different intensity levels. 

The ground motions for HC-IDA are required to broadly cover the range of response spectral shapes and 

durations expected at a particular site of interest. Such ground motions should ideally be uniformly distributed 

to minimize the uncertainty in predicting ground motion collapse intensity. Selecting a single set of ground 

motions to fulfill these criteria for a set of targets is a complex optimization problem. Therefore, this study 

utilizes genetic algorithms which imitate the process of natural selection to select an optimal set of ground 

motions. The algorithm starts with an initial population of candidate record sets generated using the Latin 

hypercube sampling technique. The Kolmogorov-Smirnov (K-S) goodness of fit test result and Pearson’s 

correlation coefficient are used by the algorithm to evaluate the fitness of record sets produced in each 

successive generation. The K-S test quantifies how closely the distribution of response spectral shapes and 

durations of a candidate set of records matches the expected marginal uniform distributions, while the 

Pearson’s correlation coefficient quantifies the orthogonality of the response spectral shapes and durations of 

the records. The algorithm terminates after a certain number of generations have elapsed, producing an optimal 

set of ground motions. 

This procedure is employed to select a generic set of ground motions covering the range of ground motion 

response spectral shapes and durations anticipated at Wellington, New Zealand. Wellington was chosen since 

it is a densely populated metropolitan region with high seismic risk and is exposed to both crustal and 

subduction earthquakes. The distributions of anticipated ground motion response spectral shapes and durations 

at other sites in New Zealand are expected to be contained within the corresponding distributions for 

Wellingon, permitting the selected record set to be used to analyse buildings at a wide range of sites in New 

Zealand. 

2. Target distributions of response spectral shapes and durations 

The spectral acceleration (Sa) at the fundamental modal period of vibration (T) at 5% damping (Sa(T)) is 

employed as the primary intensity measure (IM) used to characterize the ground motion intensity. It has been 

shown to be an effective predictor of structural response for a wide range of structures [3] and widely used in 

current structural design and assessment practice. Two secondary IMs—response spectral shape and 

duration—are used in conjunction with Sa(T) since they have both been demonstrated by previous studies ([1], 

[4]–[6]) to be good predictors of structural collapse capacity. 5-75% significant duration (Ds5-75) [7] is used in 

this study to quantify ground motion duration since it has been shown to be well suited to selecting ground 

motions for collapse risk assessment [1]. It is defined as the time interval over which 5 to 75% of the cumulative 

integral of the square of the ground acceleration is accumulated. Response spectral shape is quantified using a 

dimensionless parameter SaRatio proposed by Eads et al. [4], which has also been shown to be a good predictor 

of structural collapse capacity. SaRatio is defined as the ratio of Sa(T) to the geometric mean of the portion of 

the response spectrum that lies between the periods 0.2T and 3.0T, as shown in Eq. (1). The response spectra 

of two ground motions with high and low SaRatio values scaled to a common Sa(1.2s) value are plotted in Fig. 

1. The response spectrum of the ground motion with a low SaRatio value, recorded from the 1990 Manjil, Iran 

earthquake, contains relatively high spectral ordinates at periods above and below 1.2s, while the ground 

motion with a high SaRatio value, recorded from the 2011 Tohoku, Japan earthquake, contains relatively low 

spectral ordinates at periods above and below 1.2s. 
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𝑆𝑎𝑅𝑎𝑡𝑖𝑜 𝑇, 0.2𝑇, 3.0𝑇 =  
𝑆𝑎(𝑇)

𝑆𝑎 ,𝑎𝑣𝑔 (0.2𝑇, 3.0𝑇)
 

 

(1) 

 

Fig.  1 – Response spectra of two ground motions scaled to a common value of Sa(1.2s) = 1g with low and 

high SaRatio(1.2s, 0.2s, 3.6s) values. 

The hazard-consistent target distributions of SaRatio and Ds5-75 anticipated in Wellington are computed using 

the generalized conditional intensity measure (GCIM) framework [8]. The GCIM computations require the 

use of prediction models for response spectra and duration, as well as models for the correlation between the 

prediction residuals of response spectral ordinates and duration. Additional details regarding the GCIM 

computations can be found in [1]. The GCIM computations were carried out using the open-source seismic 

hazard analysis platform, OpenQuake [9]. SaRatio and Ds5-75 targets were computed at Wellington, New 

Zealand, conditional on the exceedance of Sa at different periods (0.1 s, 0.2 s, 0.5 s, 1.0 s, 2.0 s, and 5.0 s) at 

three different hazard levels (10%, 2%, and 0.5% in 50 years). Wellington is chosen since it is a densely 

populated metropolitan region with a high seismic risk, that is susceptible to both short duration ground 

motions from crustal earthquakes and long duration ground motions from subduction earthquakes. Hence, the 

range of anticipated ground motion response spectral shapes and durations in Wellington is expected to 

encompass the anticipated ranges at a number of other sites in New Zealand. The median SaRatio and Ds5-75 

targets, conditional on different exceedance probabilities of Sa(1.0 s) in Wellington are plotted in Fig. 2. 

 

  

(a) (b) 

 Fig.  2 – Median (a) SaRatio(1.0 s, 0.2 s, 3.0 s) and (b) Ds5-75 targets, conditional on different levels of  

Sa(1.0 s). 
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3. Database of candidate ground motions 

A database of 17,148 ground motions recorded from 334 earthquakes ranging in magnitude from MW3.4 to 

MW7.9 from the PEER NGA-West2 database [10], and 3973 ground motions recorded from large magnitude 

earthquakes such as the 1985 Michoacan, Mexico; 2010 Maule, Chile; and 2011 Tohoku, Japan earthquakes, 

was first assembled. Low intensity records with peak ground acceleration (PGA) lesser than 0.1g or peak 

ground velocity (PGV) lesser than 10 cm/s were first screened out of this database. Among the remaining 

records, only those with SaRatio and Ds5-75 values that lie within the union of the 5th to 95th percentile marginal 

ranges of anticipated SaRatio and Ds5-75 values in Wellington, conditional on the 2% in 50 year exceedance 

probability of Sa at 0.2 s, 0.5 s, 1.0 s, and 2.0 s, are selected as candidate ground motions. The application of 

these criteria produced a databse of 2467 candidate ground motions. The SaRatio and Ds5-75 values of these 

candidate ground motions are plotted in Fig. 3, along with the 5th to 95th percentile marginal target ranges. 

 

  

 

(a) (b)  

  

 

(c) (d)  

Fig.  3 – Candidate ground motions and the distributions of the SaRatio and Ds5-75 targets conditional on the 

2% exceedance probability of Sa at (a) 0.2 s, (b) 0.5 s, (c) 1.0 s, and (d) 2.0 s 

 

 

A subset of records is now selected from this database of candidate ground motions to conduct HC-IDA. This 

record set should ideally satisfy the following criteria to enable the estimation of the structural failure surface 

with the least amount of uncertainty, as discussed in Chandramohan [1]. 
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i. The records must have uniform marginal distributions of SaRatio (computed at different periods) and Ds5-

75 values over the corresponding ranges of values anticipated at the site. 

ii. The SaRatio and Ds5-75 values of the records must exhibit orthogonality. 

iii. It must contain a relatively large number of ground motions. 

Selecting a single set of ground motions that satisfy these criteria is a complex optimization problem. A set of 

100 ground motions can be selected from the 2467 candidate ground motions in more than 2.3 * 10180 

combinations. Genetic algorithms (GAs) [11] are employed in this study to select an optimal set of ground 

motions. An overview of the employed ground motion selection procedure is presented in Fig. 4. 

 

Fig.  4 – Ground motion selection procedure 

4. Genetic algorithms for ground motion selection 

Genetic algorithms (GAs) are used in this study to select a broad generic set of 100 ground motions from the 

database of 2467 candidate ground motions. GAs are based on Darwin’s evolutionary theory, i.e., survival of 

the fittest. The basic components of the GA used in this study are described below: 

i. Initial Population: This is the group of candidate record sets used to initialise the first generation of the 

optimisation algorithm. Each candidate record set is expressed as a binary string of 2467 0s and 1s [11], 

where 0 indicates a record from the database is not included in the set, and 1 indicates a record is. Since a 

set of 100 records is to be selected, the total number of 1s in a string should be 100. An initial population 

of 20 record sets with approximately uniformly distributed SaRatio and Ds5-75 values was generated using 

the Latin hypercube sampling (LHS) method [12]. 

ii. Fitness function: This is a function characterising how well a record set matches the selection objective. 

“Fitter” record sets that better match the objective stand a higher chance of being picked as parents to 

produce offspring in the next generation [13]. The fitness function we used is a linear combination of p-

values from a series of Kolmogorov-Smirnov (K-S) goodness of fit tests and a set of Pearson’s correlation 

coefficients. The p-values of the K-S tests quantify how closely the distributions of the SaRatio values 

computed at periods 0.2 s, 0.5 s, 1.0 s, and 2.0 s, and the Ds5-75 values of the records in a set follow uniform 

distributions, while the Pearson’s correlation coefficients between the SaRatio at each period and Ds5-75 

quantify the degree of orthogonality between them. 
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iii. Crossover: This is the procedure used to produce offspring for the next generation from a randomly 

selected pair of parent candidate record sets from the current generation. We used a single-point crossover 

pattern, with the mid-point of each parent binary string serving as the crossover point. Hence, an offspring 

is produced by splicing the first half of one parent’s binary string and the second half of the other [11]. 

This process is repeated to develop 10000 generations of offspring and the fittest offspring from the final 

generation is chosen as the optimal record set. 

iv. Mutation: This is the process of randomly flipping some bits from 0 to 1 or vice versa during crossover, 

to introduce diversity in successive generations [11] . In this study, 4. 

The response spectra of the 100 optimal ground motions selected using the GA, along with the mean, 15th, and 

85th percentile spectra are plotted in Fig. 5. The distributions of the SaRatio and Ds5-75 values of the selected 

ground motions are shown in Fig. 6, overlaid on the 5th to 95th percentile marginal error bars of the targets 

conditional at different periods. While the Ds5-75 values of the ground motions appear to be approximately 

uniformly distributed, the SaRatio values, especially at lower periods, appear to deviate slightly from 

uniformity. These deviations at lower periods can be attributed to the scarcity of ground motions with large 

SaRatio values in the database. 

 

 

 

 

Fig.  5 – Response spectra of the 100 selected records. 
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(a) (b)  

  

 

(c) (d)  

 Fig.  6 – SaRatio and Ds5-75 values of the selected and candidate ground motions overlaid on the targets 

conditional on the 2% in 50 year exceedance probability of Sa at (a) 0.2 s, (b) 0.5 s, (c) 1.0 s, and (d) 2.0 s 

5. Structural model and incremental dynamic analysis 

A four-storey ductile steel moment resisting frame designed according to NZS 1170.5 [14], as a part of loss 

assessment study conducted by Sullivan et al. [15], is analysed using the selected ground motion set. This 

moment frame represents a typical mid-rise office building in the Wellington central business district (CBD) 

and is designed to be located on a site with soil type C. The first storey of the frame is 4.5 m tall and all other 

storeys are 3.6 m tall. It has three bays that are each 8 m wide. The fundamental modal period of the frame is 

1.2 s. 

The 2D model of the frame was created in OpenSees (Mazzoni et al. 2006) using a lumped plasticity approach, 

as illustrated in Fig. 7. The beams and columns are modelled using elastic beam-column elements. Zero-length 

rotational plastic hinges are placed at the reduced beam sections (RBS) of the beams and the ends of the 

columns. The hysteretic behaviour of the plastic hinges is modelled using the modified Ibarra-Medina-

Krawinkler bilinear model [16], [17]. This hysteretic model is capable of capturing the in-cycle and cyclic 

degradation in strength and stiffness of the structural components, required to capture the effect of duration on 

structural response. The hysteretic shear behaviour of the finite panel zones is modelled using a quadrilinear 

backbone curve [18]. A pin-connected leaning column is modelled to capture the destabilising P-Δ effect of 

the internal gravity frames. 
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Fig.  7 – Schematic of the four-storey steel moment frame building model, and the modified IMK bilinear 

hysteretic model [17] used for plastic hinges. 

 

Incremental dynamic analysis (IDA) [19] is conducted by progressively scaling each ground motion until it 

causes structural collapse, which is identified by the unbounded increase in simulated storey drift ratio (SDR) 

above a threshold of 0.10. The lowest intensity a ground motion needs to be scaled to, to cause structural 

collapse, is termed its collapse intensity [1]. IDA curves showing the variation in peak SDR with increasing 

Sa(T) are plotted for the 100 ground motions in Fig. 8. The explicit central difference was used to conduct all 

nonlinear dynamic analyses since it has been shown to be more robust (against non-convergence) and efficient 

compared to implicit time integration schemes [20]. All analyses were also conducted using efficient parallel 

algorithms on supercomputers accessed via DesignSafe [21]. 

 

 

Fig.  8– Incremental dynamic analysis (IDA) curves 
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6. Structural failure surface 

The structural failure surface is computed by fitting the multiple linear regression model in Eq. (2) to the IDA 

results. This regression model predicts the natural logarithms of the ground motion collapse intensities using 

the natural logarithms of the SaRatio and Ds5-75 values of the ground motions as predictors. The mean 

prediction, which represents a plane in 3-dimensional space, is plotted in Fig. 9(a). The coefficients css and cdur 

in the equation characterise the partial derivatives of the plane and quantify the sensitivity of ground motion 

collapse intensity to the effects of response spectral shape and duration respectively. 𝜀 represents the error term 

of the regression model and characterises the observed scatter in the data points about the plane. 

The performance of the selected record set is compared to the FEMA P695 far field set [22], which is a 

commonly used record set consisting of 44 ground motions recorded from moderate magnitude crustal 

earthquakes. The failure surface computed using the FEMA P695 far field set is shown in Figure 9(b). The 

coefficients of determination (R2) are 0.75 and 0.75  using the selected records set and the FEMA P695 far 

field set respectively. The standard error in predicting the median collapse intensity given the SaRatio and Ds5-

75 of a ground motion is depicted using contours in Fig. 10. 

 

 

  

(a) (b) 

Fig.  9 – Regression models fit to the collapse intensities of the four-storey steel moment frame 

using (a) the selected set of 100 ground motions and (b) FEMA P695 far field set. 

 

ln Sa  T1  at collapse = c0 + csslnSaRatio + cdurlnDs + ε  

 

(2) 
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(a) (b)  

Fig.  10 – Contour plots of the standard error in predicting the median collapse intensity, overlaid on the 

SaRatio and Ds5-75 values of the (a) selected record set and (b) the FEMA P695 far field set, and the 5th to 95th 

percentile marginal error bars of the SaRatio and Ds5-75 targets conditional on the 2% in 50 year exceedance 

probability of Sa(1.2s). 

 

7. Discussion 

The inclination of the failure surface in Fig. 9 indicates that the structure collapses at lower intensities under 

ground motions of longer durations and lower SaRatio values. This implies that longer duration ground motions 

and those with lower SaRatio are inherently more damaging. The R2 values obtained from the regression 

analyses indicate that the SaRatio and Ds5-75 of ground motions are able to explain approximately 75% and 

74% of the variance in the ground motion collapse intensities obtained from the selected records set and FEMA 

P695 far field set respectively. Hence, response spectral shape and duration are seen to be good predictors of 

ground motion collapse intensity. As observed from the contour lines in Fig.10, the standard error in predicting 

the median collapse intensity in the region bounded by the marginal error bars of the SaRatio and Ds5-75 targets 

is higher for the FEMA far-field records set compared to the selected ground motions. This is a consequence 

of the non-optimal distribution of SaRatio and Ds5-75 values of the records in the FEMA P695 far field set. 

Hence, the selected record set is expected to produce a more precise estimate of the hazard-consistent collapse 

fragility curve using the HC-IDA procedure, than the FEMA P695 far field set. 

8. Conclusion 

A genetic algorithm based procedure to select a generic set of 100 ground motions for conducting HC-IDA is 

proposed in this study. The records are selected so as to have uniform and orthogonal marginal distributions 

of response spectral shape (quantified by SaRatio) and duration (quantified by Ds5-75). The records are selected 

to broadly cover the range of ground motion SaRatio and Ds5-75 values anticipated in Wellington, New Zealand. 

A four-storey modern steel moment frame building is analysed using the selected record set, and its 

performance is compared against the FEMA P695 far field set. The structural failure surface is estimated using 

both record sets, and the standard error in predicting the median height of the failure surface is quantified. It is 

observed that the selected record set enables the estimation of the median height of the failure surface with 

lesser uncertainty within the region defined by the 5th and 95th percentile marginal error bars of the SaRatio and 

Ds5-75 targets. Hence, the selected records set is expected to produce a more precise estimate of the hazard-

consistent collapse fragility curve computed using the HC-IDA procedure, compared to the FEMA P695 far 

field set. The superior performance of the selected record set indicates its suitability for conducting HC-IDA 

on a wide range of structures located at a number of different sites in New Zealand. 
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