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ABSTRACT 

Validating dynamic responses of engineered systems subjected to simulated ground motions is 

essential in scrutinising the applicability of simulated ground motions for engineering demand 

analyses. This paper compares the responses of two 3D building models subjected to recorded and 

simulated ground motions scaled to the NZS1170.5 design response spectrum, in order to evaluate 

the applicability of simulated ground motions for use in conventional engineering practice in New 

Zealand. The buildings were designed according to the NZS1170.5 and physically constructed in 

Christchurch prior to the 2010-2011 Canterbury earthquakes. 40 recorded ground motions from the 

22 February 2011 Christchurch earthquake, along with the simulated ground motions for this event 

from Razafindrakoto et al. (2018) are considered. The seismic responses of the structures are 

principally quantified via the peak floor acceleration and maximum inter-storey drift ratio. Overall, 

the results indicate a general agreement in seismic demands obtained using the recorded and 

simulated ensembles of ground motions and provide further evidence that simulated ground motions 

using state-of-the-art methods can be used in code-based structural performance assessments in-

place of, or in combination with, ensembles of recorded ground motions. 
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1 INTRODUCTION 

One of the main applications of earthquake ground motion time series (herein GM for brevity) is to conduct 

the response history analysis for designing new buildings or assessing the performance of existing structures. 

Despite the conventional use of scaled recorded GMs from past earthquakes to obtain the response of 

structures, the most critical issue in utilizing them is the paucity of GMs representing the specific-site hazard 

conditions, especially in the near-fault region. Another restriction is the incompatibility of selected GMs in 

terms of causal parameters (i.e. faulting style, magnitude, source to site distance, basin effects, etc.) with 

respect to the ruptures affecting the seismic hazard at the site of interest.  

To overcome these limitations, supplementing the ensemble of recorded GMs with simulated ones is 

considered as a viable option in seismic response analysis of engineered systems. Ground motion simulation 

methods have been significantly improved in the last decade, enabling engineers to utilize the simulated 

GMs in obtaining seismic responses of engineered systems (Bijelić et al. 2018). Although using simulated 

GMs has been accepted by some design codes (Hachem et al. 2010) such as ASCE/SEI7 (ASCE-7 2017), 

Eurocode 8 (CEN 2004) and NZS1170.5 (Standard New Zealand 2004), they still do not represent the 

majority of the use cases in engineering practice due to ambiguity of instructions, lack of detailed validations 

of simulated GMs, and uncertainty in the obtained responses in comparison to those based on recorded GMs. 

Besides, validation of simulated GMs is essential to inform GM simulators about the quality of simulation 

methods in terms of their potential shortcomings based on their application in engineering demand analysis. 

Therefore, a systematic procedure for validation is needed to address the aforementioned concerns, which 

will help to confidently address the doubts regarding the utilization of simulated GMs in response history 

analysis of structures and will provide valuable insights and feedback to improve the simulation methods.   

To scrutinise the step-by-step validation procedure, a validation matrix was developed by Bradley et al. 

(2017) which shows the complexity of metrics used in the validation process in terms of spatial extent and 

intensity measures (IMs). In this matrix, the validation of simulated GMs is addressed with respect to 

complexity in different levels of IMs, including comparison of qualitative waveforms, elastic/inelastic 

response spectra, and multi-degree of freedom (MDoF) system responses. Previous studies considered 

validation at different levels of IM complexity. For example, Bazzurro et al. (2004), Iervolino et al. (2010), 

Atkinson and Goda (2010), and Galasso et al. (2012) compared the responses of nonlinear single degree of 

freedom (SDoF) system excited by simulated and recorded GMs. Jayaram and Shome (2012), Galasso et al. 

(2013), Bijelic et al. (2014), Burks et al. (2015), and Bijelić et al. (2018) validated simulated GMs in terms of 

the response of MDoF systems. 

In the context of the above sentiments, this study is focused on comparing seismic demand of 3D building 

models designed according to the NZS1170.5 subjected to recorded and simulated GMs of the 22 February 

2011 Christchurch event. Two buildings that have been designed and physically constructed based on NZ 

standards are considered.  The 3D nonlinear response history analysis models by consulting engineers are 

directly utilized (Holmes consulting), and their seismic response is quantified through commonly adopted 

Engineering Demand Parameters (EDPs) (i.e. peak floor acceleration and inter-storey drift ratio). As-

recorded and simulated GMs from the 22 February 2011 Mw6.2 Christchurch earthquake are scaled 

following the NZS1170.5 procedure, and the computed seismic demands are compared. Through analysis 

and interpretation of the results, we address whether the structural responses from simulated GMs are 

comparable to recorded GMs for the considered structural systems, and hence explore the opportunity for 

their use in engineering design.  
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2  BUILDING PROPERTIES AND MODELLING 

Two buildings were selected as the case-studies for nonlinear dynamic analyses (with their 3D view 

presented in Figure 1a-b.). The mid-rise building, denoted as Building A, is a six-storey reinforced concrete 

(RC) with moment resisting frames in both directions, a boundary wall system in the North-South direction, 

and shear walls in the East-West direction. Also, a lightweight storey has been added to the roof of this 

building.  The high-rise building, denoted as Building B, is a 13-storey with ductile RC walls in the East-

West direction and ductile RC coupled walls in the North-South direction. For this building, precast concrete 

elements were designed for the perimeter truss beams. The fundamental periods, for Buildings A and B, are 

0.5 sec and 2.0 sec, respectively.  

The 3D nonlinear response history analysis models are analysed by Holmes Consulting Engineers finite 

element software (ANSR). Beams and columns of these buildings were modelled using the lumped plasticity 

method, and the wall elements are modelled using the effective fibre-model approach at the ground level 

interface which can capture flexural yielding. The general nonlinear behaviour of concrete elements are 

assumed based on FEMA 356 (2000) and ASCE/SEI-41 (2017). The design ductility of 6 for the era of 

construction and the level of detailing in the elements is considered. 

  

Figure 1: 3D view of (a) Building A; (b) Building B.  

3 OBSERVED AND SIMULATED GROUND MOITION SETS 

The selected buildings are subjected to GMs from 22 February 2011 Christchurch Earthquake (as one of the 

devastating events in the seismic history of New Zealand with 185 fatalities and 15 billion USD damage 

(Quigley et al. 2016)). Records from 40 stations located in the Canterbury region on different soil types from 

soft soil to rocks (155 m/s < Vs30 < 800 m/s) are considered.  

Simulated GMs from Razafindrakoto et al. (2018) for this specific event are utilized. This simulation has 

been conducted using the hybrid broadband method (Graves and Pitarka 2010, 2015). Figure 2a-b illustrate 

the 5% damped (pseudo) spectral acceleration of the observed and simulated GMs at the considered stations; 

indicating that the considered GMs span a wide range of GM intensity as a result of variation in the source-

to-site distance, soil conditions, among others. Herein, the geometric mean of the two components is 

considered as the representative of GM in each station.   

Simulated and observed GMs are scaled to represent the NZS1170.5 response spectrum at 475 years return 

period. The scaling is performed such that the differences between scaled and the NZS1170.5 target 

spectrum is minimized for 0.4Tn and 1.3Tn range (Tn being the fundamental period of structure). Figure 2c-d 

compare the median of the scaled GMs with respect to the NZS1170.5 response spectrum. The median of the 

observed GMs is greater than the simulated ones for periods larger than the scaling range (1.3Tn<T<1.4 s) for 

Building A, while the medians are close for Building B.  

(b) (a) 
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Figure 2: (a-b) Unscaled response spectra for the 40 observed and simulated GMs; (c-d) median of scaled 

response spectra for Building A and B.  

4 COMPARISON OF ENGINEERING DEMAND PARAMETERS 

4.1 Considered engineering demand parameters  

The peak floor acceleration (PFA) and inter-storey drift ratio (IDR) at each floor are selected as the principal 

EDPs which are appropriate representatives of damages in non-structural and structural components and 

commonly used by codes to satisfy the defined design criteria. The considered EDPs are assumed to be 

lognormally distributed and their geometric mean, 16th, and 84th percentiles are considered to compare 

responses.  

4.2 Comparison between the EDPs  

Figure 3 shows the ratio of simulated to observed EDPs (i.e. sim/obs) at each floor centre of mass and the 

corresponding geometric mean, 16th and 84th percentiles along the height of the buildings. As shown in 

Figure 3a-b, there is an underestimation from simulated results in the peak floor acceleration and inter-storey 

drift ratio for Building A, which is higher for inter-storey drift ratio in comparison to peak floor acceleration. 

This underestimation can potentially be attributed to the greater value for the median of observed GM 

spectrum as shown in Figure 2c. Since the structure experiences nonlinearity the fundamental period of the 

system increases out of the GM scaling range where the median of observed GMs are higher than the 

simulated ones. The maximum difference between the geometric mean of sim/obs values and the one-to-one 

line (i.e. red line in Figure 3) is 0.89 for peak floor acceleration (at the sixth storey) and 0.77 for inter-storey 



Paper 95 – Comparison of recorded and simulated ground motions for NZS1170.5-based 3D building… 

2019 Pacific Conference on Earthquake Engineering and Annual NZSEE Conference 5 

 

drift ratio (at the first storey). As shown in Figure 3a-b, the range between the 16th to 84th percentiles for peak 

floor acceleration is smaller than that for inter-storey drift ratio. Figure 3c-d present a good agreement 

between the EDPs of simulated and observed responses along the height of the structure for Building B. In 

contrast to Building A, the range between the 16th to 84th percentiles for peak floor acceleration is higher than 

that for inter-storey drift ratio for this building. The maximum difference between the geometric mean of 

sim/obs values and the one-to-one line is 0.93 for peak floor acceleration (at the 12th storey) and 1.064 for 

inter-storey drift ratio (at the sixth storey). 

   

  

Figure 3: The ratios, geometric mean, and percentiles of simulated to observed responses (a) Building A 

peak floor acceleration (PFA); (b) Building A inter-storey drift (IDR); (c) Building B PFA; (d) Building B 

IDR.  

4.3 EDPs trends with respect to data sample size 

The effect of the sample size of the utilized GMs on the differences between the EDPs from the observed and 

simulated GMs is scrutinised using the bootstrap technique (Efron and Tibshirani 1994) and hypothesis 

testing. Bootstrapping helps to find how the observed differences can be explained by a large data set in 

contrary to the utilized data with a limited size. This is done by drawing random realizations with 

replacement from the initial set to generate a large ensemble. Also, hypothesis testing is used to check 

whether there is a systematic difference between two sets of responses. A two-tailed t-test is performed under 

the null hypothesis at the significance level of 0.05 following the suggested algorithm by Efron and 

Tibshirani (1994). Since 11 records are suggested as the minimum number of records for nonlinear response 

history analysis by the recent versions of building codes (ASCE-7 2017), in view of this, 11 records are 

considered for each random realization. Then the geometric mean of each realization is obtained and 
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compared from 5000 bootstrapped samples. To assess the statistical significance of evidence, a p-value is 

calculated under the null hypothesis. A p-value less than 0.05 demonstrates that there is significant evidence 

for rejecting the null hypothesis (i.e. observed and simulated GMs result in significantly different responses). 

Conversely, there is weak evidence to reject the null hypothesis for the p-values greater than 0.05 (i.e. 

observed and simulated GMs results are similar).  

Figure 4a-b show the geometric mean of all realizations and the 16th and 84th percentiles for selected EDPs of 

Building A. Figure 4b shows a considerable difference in the geometric mean of inter-storey drift ratio (with 

simulated results smaller than the observed) while there is a good agreement in peak floor acceleration 

(Figure 4a). As discussed, this is potentially related to the large median spectral acceleration of observed 

GMs (Figure 2c) compared to simulated GMs for periods outside the scaling range (T>1.3Tn). The 

maximum difference between the peak floor acceleration (Figure 4a) occurs at the sixth storey where the 

value for observed GMs (0.41g) is 10.2% greater than that for the simulated GMs (0.371g) which is 

statistically significant (p-value=0.0076). The p-values for peak floor acceleration in all stories of Building A 

except for the fifth and sixth stories are greater than the significance level (0.05), which shows the difference 

for two set of GMs is not significant in these stories.  The maximum difference between inter-storey drift 

ratios for two groups occurs at the first storey (Figure 4b) where the value for observed GMs (0.00349) is 

24.5% greater than that for the simulated GMs (0.00263) which is statistically significant (p-value=0.0016). 

Overall, the calculated p-values for inter-storey drift ratio demonstrate that the difference between the two 

sets of responses is statistically significant for all stories.  

  

  

Figure 4: Geometric mean and percentiles of bootstrapped samples (a-b) Building A peak floor acceleration 

(PFA) and inter-storey drift ratio (IDR); (c-d) Building B PFA and IDR.  
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Figure 4c-d show the geometric mean of all realizations and the 16th and 84th percentiles for selected EDPs of 

Building B. These figures generally demonstrate a good agreement between the EDPs of two GM sets. The 

maximum difference between the peak floor acceleration and inter-storey drift ratio of two groups of the 

observed and simulated responses is significantly small (i.e. 1%). Performing hypothesis testing and 

calculating p-values, shows that the differences are not statistically significant for both EDPs for Building B 

(as all values are greater than

5 CONCLUSION 

State-of-the-art ground motion (GM) simulation methods provide opportunities to utilize simulated GMs as a 

supplement or in-place of recorded GMs ensembles for seismic hazard and response history analysis 

(specifically when there is a paucity of recorded GMs consistent with site-specific hazard in the database). 

However, validation needs to be conducted to scrutinise the quality of simulated GMs prior to their 

utilization. The validation process (which can be performed at different levels), gives valuable insights for 

engineers in using simulated GMs as inputs for response history analysis and valuable feedback for GM 

simulators to improve the simulation methodologies. 

In the context of validation for GMs compatible with the design code spectrum, this paper compares 

responses of two 3D structural models, a 7-storey and a 13-storey building, subjected to 40 recorded and 40 

simulated GMs of the 22 February 2011 Christchurch earthquake scaled to the NZS1170.5 spectrum. The 

models represent real buildings, which were designed based on the NZS1170.5 and physically constructed 

before the Canterbury earthquake sequences. Attempts are made to investigate the similarities and 

differences between the peak floor acceleration and inter-storey drift ratio of the systems subjected to 

observed and simulated GMs when the code instructions are followed in the analysis and design.  

The results indicate a general agreement between the peak floor acceleration calculated by the simulated and 

recorded GMs for the two buildings. For the 13-storey building, the hypothesis test results indicate that the 

differences in inter-storey drift ratio are statistically small while they are statistically significant for the 7-

storey building (which can potentially be attributed to the greater value of the median of the observed GMs 

spectrum outside the applied scaling range suggested by the NZS1170.5). The findings of this paper 

demonstrate the applicability of simulated GMs in the context of New Zealand-specific events and buildings 

when the code-based approach in response history analysis is followed.    

6 ACKNOWLEDGEMENT 

This project was supported by QuakeCoRE, a New Zealand Tertiary Education Commission-funded Centre 

via QuakeCoRE PhD Scholarship. This is QuakeCoRE publication number 0415. 

The authors would like to thank Holmes Consulting for providing the structural analysis used in this study. 

7 REFERENCES 

ASCE-7. 2017. Minimum design loads and associated criteria for buildings and other structures, In. Reston, VA. 

ASCE/SEI-41. 2017. ASCE Standard, ASCE/SEI, 41-17, Seismic Evaluation and Retrofit of Existing Buildings 
(American Society of Civil Engineers). 

Atkinson, G.M. & Goda, K. 2010. Inelastic seismic demand of real versus simulated ground-motion records for 
Cascadia subduction earthquakes, Bulletin of the Seismological Society of America, Vol 100(1) 102-15. 

Bazzurro, P., Sjoberg, B. & Luco, N. 2004. Post-elastic response of structures to synthetic ground motions, Report for 
Pacific Earthquake Engineering Research (PEER) Center Lifelines Program Project, 65-112. 

Bijelic, N., Lin, T. & Deierlein, G. 2014. Seismic response of a tall building to recorded and simulated ground motions, 
Tenth U.S. National Conference on Earthquake Engineering Frontiers of Earthquake Engineering, Anchorage, 



Paper 95 – Comparison of recorded and simulated ground motions for NZS1170.5-based 3D building… 

2019 Pacific Conference on Earthquake Engineering and Annual NZSEE Conference 8 

 

Alaska. 

Bijelić, N., Lin, T. & Deierlein, G.G. 2018. Validation of the SCEC Broadband Platform simulations for tall building 
risk assessments considering spectral shape and duration of the ground motion, Earthquake Engineering & 
Structural Dynamics, Vol 47(11) 2233-51. 

Bradley, B.A., Pettinga, D., Baker, J.W. & Fraser, J. 2017. Guidance on the utilization of earthquake-induced ground 
motion simulations in engineering practice, Earthquake Spectra, Vol 33(3) 809-35. 

Burks, L.S., Zimmerman, R.B. & Baker, J.W. 2015. Evaluation of hybrid broadband ground motion simulations for 
response history analysis and design, Earthquake Spectra, Vol 31(3) 1691-710. 

CEN. 2004. Eurocode 8 - Design of structures for earthquake resistance, Part 1: General rules, seismic actions and 
rules for buildings, European standard EN 1998 1, European Committee for Standardization. In. Brussels. 

Efron, B. & Tibshirani, R.J. 1994. An introduction to the bootstrap (CRC press). 

FEMA 356, C., Building Seismic Safety. 2000. Prestandard and commentary for the seismic rehabilitation of buildings, 
Report FEMA-356, Washington, DC. 

Galasso, C., Zareian, F., Iervolino, I. & Graves, R. 2012. Validation of ground‐motion simulations for historical events 
using SDoF systems, Bulletin of the Seismological Society of America, Vol 102(6) 2727-40. 

Galasso, C., Zhong, P., Zareian, F., Iervolino, I. & Graves, R.W. 2013. Validation of ground‐motion simulations for 
historical events using MDoF systems, Earthquake Engineering & Structural Dynamics, Vol 42(9) 1395-412. 

Graves, R.W. & Pitarka, A. 2010. Broadband ground-motion simulation using a hybrid approach, Bulletin of the 
Seismological Society of America, Vol 100(5A) 2095-123. 

Graves, R.W. & Pitarka, A. 2015. Refinements to the Graves and Pitarka (2010) broadband ground‐motion simulation 
method, Seismological Research Letters, Vol 86(1) 75-80. 

Hachem, M.M., Mathias, N., Wang, Y., Fajfar, P., Tsai, K., Ingham, J., Oyarzo Vera, C. & Lee, S. 2010. An 
international comparison of ground motion selection criteria for seismic design, Joint IABSE-fib Conference on 
codes in structural engineering: Developments and Needs for International Practice. 

Iervolino, I., De Luca, F. & Cosenza, E. 2010. Spectral shape-based assessment of SDOF nonlinear response to real, 
adjusted and artificial accelerograms, Engineering Structures, Vol 32(9) 2776-92. 

Jayaram, N. & Shome, N. 2012. A statistical analysis of the response of tall buildings to recorded and simulated ground 
motions, 15th World Conference on Earthquake Engineering, 1-10. Lisbon, Portugal. 

Quigley, M.C., Hughes, M.W., Bradley, B.A., van Ballegooy, S., Reid, C., Morgenroth, J., Horton, T., Duffy, B. & 
Pettinga, J.R. 2016. The 2010–2011 Canterbury earthquake sequence: Environmental effects, seismic triggering 
thresholds and geologic legacy, Tectonophysics, Vol 672 228-74. 

Razafindrakoto, H.N.T., Bradley, B.A. & Graves, R.W. 2018. Broadband Ground‐Motion Simulation of the 2011 
Mw 6.2 Christchurch, New Zealand, Earthquake, Bulletin of the Seismological Society of America, Vol 108(4) 2130-
47. 

Standard New Zealand. 2004. NZS 1170.5:2004 - Structural design actions. Part 5: Earthquake actions-New Zealand. 
In. Wellington, New Zealand. 

 


